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Abstract 

 

CONSERVED NON-CODING ELEMENT m2de3 

DIRECTED GENE EXPRESSION DURING DEVELOPMENT 

 

Laiton Reid Steele 

B.S., Wingate University 

M.S., Appalachian State University 

 

 

Chairperson:  Dr. Ted Zerucha 

 

 

 Meis genes have important roles in gene regulation and development. The meis 

family encodes homeodomain proteins that are known to work in combination with other 

transcription factors such as the Hox and Pbx families to regulate development. The primary 

purpose of this study is to gain a better understanding of the genetic mechanisms that control 

the expression of meis genes during development. The Zerucha lab identified four highly 

conserved non-coding elements, named m2de1-m2de4 (for meis2 downstream element) that 

we hypothesize regulate expression of the Meis2 gene. All four elements have been identified 

in all tetrapod genomes examined however only one element, m2de1, has been identified in 

teleosts. These elements were identified within a linked gene that is found located adjacent to 

Meis2 in all vertebrates examined, which has been temporarily named M2lg (zebrafish 

homolog zgc:154061). The role of the M2lg gene is not currently known, however in recent 

research it has been linked to Congenital Dyserythropoietic Anemia which suggests it plays a 

role in primitive hematopoiesis. In my thesis research, I have characterized the m2de3 
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element to determine if this element is able to direct spatial and temporal gene expression 

that is consistent with Meis2 expression patterns over different stages of development. 

Zebrafish (Danio rerio) were selected as a model organism in combination with a Tol2 

injection cassette to introduce gene expression constructs containing murine m2de3 through 

microinjection at the single cell stage. These constructs use m2de3 to drive the expression of 

eGFP, through the cfos minimal promoter. m2de3 driven expression can then be visualized 

under laser confocal microscopy throughout development. In primary transgenic embryos, 

m2de3 directed expression was observed in a punctate expression pattern along the 

notochord, within motor neurons along the notochord and around the heart and in developing 

muscle fibers along the trunk of zebrafish embryos. This is also consistent with murine Meis2 

expression. In addition, a stable m2de3 transgenic zebrafish genetic line was generated and 

confirmed by genotyping. This transgenic line demonstrates an expression pattern along the 

entire length of the notochord and within the heart directed by m2de3.  
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Introduction 

 

 The expression and regulation of an organism’s genes is vital for development as well 

as the maintenance of body systems and functions. The central dogma of molecular biology 

outlines how DNA is transcribed into RNA which is in turn is translated into protein final 

products, but gene regulation enables this simple process to produce a wide variety of protein 

products from the same template DNA sequence. Regulatory mechanisms must accurately 

affect only the correct gene targets to specific locations in the organism at specific times in 

development; for example in developmental body patterning where exact gene activation and 

patterning of multiple genes is necessary to determine body axis and segmentation. The 

process of gene regulation is also able to respond to and be inducible by internal signaling, 

feedback loops and external environmental stimuli for development of the organism. The 

complex level of regulation maintained in organisms requires interaction between multiple 

regulatory genes within the DNA itself. This task is undertaken with specific regulatory 

proteins and general transcriptional machinery interacting to achieve complete combinatorial 

gene control (Bhattacharjee et al., 2013; Venters and Pugh, 2009).  

 DNA in all organisms exists as a flexible double helix structure. In eukaryotes, DNA 

is organized into chromosomes made of repeated chromatin complexes which are in turn 

constructed from nucleosome units. Nucleosomes are 147 nucleotides of DNA material 

wrapped around eight histones proteins that make up a barrel or spool shape that organizes 

the DNA, and histone structure and function is highly conserved across eukaryotic species. 

There are four different types of histone proteins, labeled H1 through H4 and each subunit is 

found twice in a single histone for a total of 8 per histone. In addition, each histone subunit 

has a protein structural “tail” domain that is accessible to modification at a selection of sites. 
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The wide variety of modifications essentially function as a key or code, that cause 

differential changes in histone structure affecting the availability of the genetic material 

located on the nucleosome. Some examples of common histone modification include 

methylation, acetylation, and phosphorylation. Specific combinations of different 

modifications have been shown to act as signals for function as a repressor or activator. For 

example, the H1 histone subunit has been demonstrated to serve as a sectional repressor, 

limiting expression of its target genes when the hormone progesterone is present and also 

while under selective phosphorylation or methylation. On the other hand, trimethylation of 

the H3 subunit can act as either a repressor or activator merely by changing the location of 

the methyl groups on the amino acids within the histone tail. (Crane-Robinson, 2016; 

Ferraiuolo et al., 2010; Jenuwein, 2001; Khochbin, 2001; Ng et al., 2016; Vicent et al., 

2016).  

 During embryogenesis, many developmental control genes are found to be positioned 

in clusters within open chromatin regions between histones with exposed promoters for ease 

of transcription. RNA polymerase II is often present at the exposed promoters of key 

developmental genes ready for the start of transcription without being active, which 

contradicts the normal understanding of RNA polymerase recruitment but enables faster gene 

transcription for time sensitive expression. This “poised” or bivalent state is suspected to be 

maintained through the combination of both activator and repressor mechanisms that holds 

the promoter in an inactive but ready state (Muse et al., 2007; Zeitlinger and Stark, 2010). 

 Once a DNA sequence is open and in an exposed chromatin state, gene transcription 

can then take place. RNA polymerase II (RNAPII) is the most common transcriber protein of 

DNA in eukaryotes, but RNAP II requires general transcription factors (GTF) to recruit it to 
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the template DNA sequence (Venters and Pugh, 2009). General transcription starts with 

transcription factor II D (TFIID), a large complex containing a TATA binding protein that 

attaches to TA-rich sequences within the promoter and causes a bend in the DNA strand. 

TFIID then serves as a stable site for the binding of other general transcription factors. 

Transcription factor II B (TFIIB) is next recruited and binds directly to TFIID. Once these 

two interact, transcription factor II F, factor II E and factor II H bind together respectively to 

form a zinc ribbon complex which increases the stability of the complex. The entire complex 

then acts to recruit the RNA polymerase, which binds within the transcription starting 

position alongside TFIIE and TFIIH. Finally, on the opposite side of TFIID, transcription 

factor A (TFIIA) attaches to stabilize the complex to the DNA strand. This process can be 

facilitated by gene-specific activator proteins bound to cis elements. These proteins that are 

bound to a cis element interact with the general transcriptional machinery via DNA looping 

and can increase or decrease the rate of transcription. An additional role of the GTF TFIIH is 

to loosen DNA from tightly wound histones and for weakening DNA strand binding in 

preparation for helicase activity. (Buratowski et al., 1989; Conaway and Conaway, 1993; 

Dvir et al., 2001; Liu et al., 2013; Roeder, 1996; Venters and Pugh, 2009).   

 DNA transcription can then occur moving along the gene sequence generating an 

unprocessed complimentary mRNA strand, which can then be post-transcriptionally modified 

before being sent for translation. First, RNA is capped with a modified guanine that prevents 

RNases from degrading the 5’ end of the mRNA. This cap has also been shown to be 

necessary for splicing initiation and as a signal tag for direction of mRNA to the ribosome. 

Second, polyadenylation of the 3’ end of the mRNA strand occurs when a 250 nucleotide 

section of adenines are added to the tail end of the sequence which slows sequence damage 
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by units of RNase since the polyadenylation must be removed first and helps with translation 

initiation. Finally, mRNA must be accurately spliced to remove introns or non-coding 

regions from the transcript.  

Splicing is driven by the looping and production of lariats which are then spliced out 

(Amrani et al., 2008; Klerk and Hoen, 2015; Topisirovic et al., 2011). Disorders involving 

incorrect splicing have been linked to a selection of diseases related to neurodegeneration, 

genetic and developmental disorders and cancer in humans. Evidence has even shown that as 

a preventive measure of protection against splicing error, a small subsection of vital growth 

and developmental genes will not contain introns (Grzybowska, 2012). Splicing is further 

complicated in that splicing order of the exons together can be modified to produce different 

forms of processed mRNA from the same gene template. This process is termed alternative 

splicing, meaning a single genes transcript can generate multiple versions of the final 

sequence product that can alter the final splicing pattern of the processed exon mRNA or 

even act as splicer enhancers or suppressors. This process was expanded upon through the 

ENCODE genome sequencing project which examined splicing patterns on a large scale. The 

final result of this study is known as the spliceosome, which identifies the multiple possible 

products of the genes in the genome (Blencowe, 2006; Consortium 2007; Klerk and Hoen, 

2015; Wang et al., 2008).  

 Transcription and translation are highly dependent on gene regulation controlled by 

elements of the DNA sequence which are termed cis-acting elements. These elements are 

usually short sequences associated with the sequence to be transcribed that serve as binding 

sites that can be located upstream or downstream from the target gene. The most common of 

these sequences are the previously discussed promoters, which serve as the starting position 



 

 
5 

for transcription machinery of their specific target gene. Promoters are commonly found 

located within 40 to 50 base pairs upstream of the transcription start site and are extremely 

specific to their gene target, but a single gene can have multiple promoters for different gene 

products. In addition to the proximal promoter, long distance distal promoters have been 

identified that require DNA looping to interact with the core promoter, but still bind in a 

similar fashion as the proximal promoters with the initiation complex. 

The promoter’s role in gene regulation is to serve as a binding site for the pre-

initiation complex where transcription of a gene starts. This role is based on a selection of 

binding sites that are recognized by the general transcriptional machinery and specific 

transcription factors together to activate transcription. Originally, promoters were subdivided 

into major categories depending on specific nucleotide sequences found within them 

(Carnicnci, 2006; Cooper et al., 2005; Li et al., 2015). The first category are TATA box 

enriched promoters, which occur in around 25% of human core promoters and around 33% 

of vertebrate promoters. However, the TATA sequence promoter is the most common overall 

when all organisms are considered (Gagniuc et al., 2012, 2013). The second category is CpG-

rich promoters, which are sequences containing cysteine guanine nucleotide pairs, and are 

prevalent in housekeeping genes. CpG binding sites are of particular interest in gene 

regulation because the addition or removal of a methyl group to a CpG site affects gene 

expression, with demethylation of a gene possibly even leading to overexpression. However, 

further research showed that promoters of the same type could respond differently depending 

on location, orientation and different gene interactions associated with the new location. This 

led to comprehensive examination analyzing promoter physical structure, gene sequence and 

nucleotide count to further differentiate the promoter categories, resulting in a minimum of 
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ten promoter category groups which are highly conserved even across species (Gagniuc et 

al., 2012; Gagniuc et al., 2013). Promoter function also results from location, for example 

promoters on the same chromosome have even been shown in humans to exhibit small 

chromosome specific structural similarities. These chromosome similarities are present 

regardless of gene function or cell type, leftover from evolutionary dynamics during the 

formation of chromosomes and what genetic material is available for transcription and 

accumulation of mutations. (Bhattacharjee, 2013; Cooper et al., 2005; Gagniuc et al., 2012, 

2013; Li et al., 2015).  

 While promoters serve as the staging grounds for the initiation of transcription, 

interactions with the correct enhancer are required for optimal transcription. An enhancer’s 

function in the genome is to modify the strength of affinity of promoters, which allows them 

to directly control regulation of a gene by affecting the accessibility of the target gene to both 

general and specific transcription machinery. Enhancers were originally discovered within 

the simian virus genome and function regardless of location or orientation in relation to the 

promoter. Enhancers positively affect transcription rates through direct binding with 

promoters in combination with activator proteins that can interact with the promoter. The 

promoter must be in accessible chromatin regions to the enhancer, but enhancers are 

commonly found some distance away from their gene promoter target. (Arensbergen et al., 

2014; Banjeri et al., 1981; Bulger and Groudine, 2011). For example, the farthest distance an 

enhancer has been identified from its associated promoter is close to 1 million nucleotides 

away from the developmentally important gene Sonic hedgehog (Lettice et al., 2003). 

One example of developmental enhancers are those associated with the gene Sox10. 

Sox10 is an extremely important developmental gene and is expressed during sex 
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differentiation as well as within regions of neural, optical and skeletal development. Sox10 is 

also shown to be involved with the manifestation of Hirschsprung disease, one of the most 

common developmental defects in humans (Bondurand and Sham, 2013; Guth and Wegner, 

2008). The gene Sox10 is indirectly controlled by the enhancer Sox10E2 and is activated 

through binding with Sox8, Pea3 and cMyb genes to positively affect transcription. 

Expression of the gene is directed to different locations by Sox9, Ets1 and cMyb (Betancur et 

al., 2011).  

 Recently, a second specialty class of enhancers has been described. Shadow 

enhancers currently appear to be specialized secondary enhancers which drive expression in 

the same expression pattern and are bound by the same transcription factors as the primary 

enhancer. Originally identified with brinker and sog genes in Drosophila, shadow enhancers 

are extremely common within developmental genes. 70% of shadow enhancer sequences 

have more than two shadow enhancers, with the highest number discovered so far being five 

for Traf1 (Cannavò et al., 2016). Shadow enhancers are not fully understood but seem to 

serve as a measure of redundancy and robustness of critical genes in regulation and 

development against any changes that may occur within the genome. There are multiple 

hypotheses on shadow enhancers and why they remain so prevalent within different 

genomes. One theory suggested by Cannavo et al. suggests that multiple enhancers have 

evolved to increase expression of genes whose products are required in high quantities. 

(Barolo, 2012; Cannavò et al., 2016).  

 Repressors and silencer elements serve the opposite of the role of enhancers, acting to 

downregulate or stop the transcription of a target gene. The well-known canonical example 

of gene silencing was the discovery of the lac-operon by Jacob and Monod. The enzyme 
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needed for the breakdown of lactose is only produced when lactose is present as a food 

source, and this is accomplished through a gene silencer. When no lactose is present, the 

silencer I gene produces a repressor protein that is able to bind to the operator region that 

enables enzyme production, and prevents the RNA polymerase recruitment and thus 

transcription of the gene. However, if lactose is present, the repressor protein is able to bind 

to lactose instead of binding to the repressor and thus enabling production of beta-

galactosidase. 

Silencer elements commonly target gene promoters or general transcription 

machinery, while a subset of silencers in specific cases can instead target other transcription 

factors specific to the gene of question. (Arnosti, 2011; Lewis, 2011; Tajbakhsh et al., 2011). 

Silencer elements must be accessible within the chromatin and intron exon location of a 

silencer has been shown to be both a limiting factor to either gene or to interrupting active 

transcription. Repressors demonstrate a wide variety of different functions, although most 

silencers are orientation and promoter dependent. Certain silencer elements can even function 

in both read directions due to specialized inverted repeat sequences such as human 

Aromatase Silencer S1 (Zhou, 1998) Silencer elements are also specific to application and 

transcription state; some can only affect the gene when it’s not actively being transcribed 

while others can interrupt expression completely at any time, such as the sog gene and the 

Snail silencer element which is capable of stopping active expression of sog. Silencers are 

also vulnerable to mutation and play a role in disorders such as Huntington’s disease and are 

a target for a variety of common cancers and tumors. Silencer elements are vital for 

development genes that must quickly stop transcription and also inhibit other genes 

downstream of primary development genes.  
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 Because genes can be located within close proximity to other genes with different 

expression patterns and enhancer specificity, a mechanism of isolation and separation is 

necessary between genes. Insulator regions serve as boundaries between different genes 

directing vastly different expression patterns and functions, preventing miscommunication. 

Insulator regions perform this role by mediating chromatin availability and DNA looping 

through insulator protein interactions that allows them to selectively control the separation of 

genes (Ali et al., 2016; Burgess-Beusse et al., 2002; Grosveld et al., 1987; Kyrchanova and 

Georgiev, 2014; West et al., 2002). For example, modification of the HoxA HK3K27me3 

insulator domain shifted the active chromatin domain, moving a methylated unavailable gene 

area and enabling the activation of a different more caudal Hox gene in the original 

expression area (Narendra et al., 2015). In addition to preventing access to promoters, in 

certain cases insulators can also interact directly with promoters and can be necessary to 

enable gene transcription. The presence of the Wari and 1A2 insulators was shown to be 

necessary for the target white promoter and subsequent yellow gene transcription through the 

formation of a promoter-insulator loop (Erokhin et al., 2011; Kyrchanova and Georgiev, 

2014). Insulators can also be positioned between a promoter and enhancer, serving as an 

enhancer binding blocker. This function enables the insulator to block the ability of the 

enhancer to interact with the promoter. An interesting point of enhancer binding blockers 

occurs due to the polarity that these insulators demonstrate for different effects. For example, 

an insulator can block transcription in one direction and allow transcription in the reverse 

direction. One example of this is the upstream digit and downstream hernia insulators and 

how they regulate access of various HoxD genes. In normal orientation, digit is able to access 

Hoxd10 through Hoxd13 while hernia can only access Hoxd10 through Hoxd12 by 
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physically blocking access across Hoxd12 in one read direction. Conversely, by inverting the 

insulators direction within the sequence, digit can only access Hoxd11 through Hoxd13 while 

hernia can access Hoxd10 through Hoxd13 since digit is blocked, demonstrating how gene 

positioning and insulator interactions are important. This is even more important within the 

context of development, as Hox genes are positioned within the genome in the order in which 

they are expressed within the different body sections, meaning the positional access of Hox 

genes can change the entire body plan. (Burgess-Beusse et al., 2002; Duboule, 1998; West et 

al., 2002.) 

 The development of an organism from zygote to adult is directed by an intricate 

hierarchy of genes that interact together to generate the specific and accurate expression 

patterns that outline the body’s structure and organize precursor structures for correct 

development. The careful regulation of body plan patterning is entirely dependent on the 

correct determination of the anterior-posterior and dorsal-ventral axis of the body. This 

“blueprint” patterning occurs in a distinctive order and in relation to other developmental 

expression patterns which serves as a template precursor for all forthcoming structures 

(Delgado and Torres, 2016; Gilbert, 2000; Sander, 1975). Once these patterns have been 

established, development can advance properly through key developmental milestones such 

as gastrulation, neurulation, and organogenesis to generate an adult organism. These 

functions of gene regulation are also tightly regulated temporally and spatially as they 

develop and maintain an organism in conjunction with a wide variety of transcription factors. 

It is also well demonstrated in many model organisms that disruptions of these patterns and 

developmental stages can lead to a variety of disorders and mutant phenotypes. (Arnosti, 

2011; Goulding and Gruss, 1989; Zeitlinger and Stark, 2010).   
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 During embryonic development, one of the most important and intensively studied 

developmental genes are the homeobox gene family. All homeobox genes contain a 

characteristic homeobox DNA sequence approximately 180 base pairs in length. The 

homeobox region is a highly conserved sequence encoding a homeodomain binding site 

region of approximately 60 amino acids that contain a three alpha helix domain including a 

helix-turn-helix DNA binding motif with an N-terminal arm on one end (Desplan et al. 1988; 

McGinnis 1984). The homeodomain DNA binding domain allows the regulation of target 

genes, often containing TAA or TAAT binding sites (Banerjee-Basu and Baxevanis, 2001; 

Brennan and Matthews et al., 1989; Desplan et al., 1988; Duboule, 1998; Gehring et al., 

1994; Goulding and Gruss, 1989; Krumlauf, 1994; Ruddle, 1985). Homeobox genes were 

discovered in the 1980’s during research about developmental patterning and segmentation 

patterns in Drosophila melanogaster. Homeobox genes were found to be highly conserved 

across multiple organisms and even the non-coding DNA flanking regions share remarkable 

conservation across species in multiple cases (Goulding and Gruss, 1989; Holland and 

Hogan, 1988; Jaynes and O'Farrell, 1988; Lawrence and Morata, 1976; McGinnis et al., 

1984; McGinnis and Krumlauf, 1992; Ruddle et al., 1985). Abnormal disorders and 

phenotypes have been demonstrated to be caused by mutations to homeobox genes, and 

across multiple species. (Lawrence and Morata 1976, 1994). 

 One subset of Homeobox genes is the aforementioned Hox family of genes which are 

regulators that pattern the position of the anterior-posterior axis and organs through precise 

gene regulation (Amores et al., 1998; Akam 1989; Goulding and Gruss, 1989; Krumlauf, 

1994; McGinnis and Krumlauf, 1992). Hox genes or homeotic genes were originally 

identified due to their ability to generate mutant phenotypes in Drosophila melanogaster 
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where one body segment exhibited the identity or characteristics of another segment. The 

classical example of these mutants is Antennapedia, which causes the wild type antenna 

located on the head of the fly to form legs (Lewis, 1978; Mallo et al., 2010; McGinnis et al., 

1984, McGinnis and Krumlauf 1992; Nüsslein-Volhard and Wieschaus, 1980). Hox genes are 

clustered in the genome and exhibit collinearity; Hox genes are found clustered in the 

genome where the order of expression pattern reflects their genomic organization where 

genes at the 3’ end of the cluster are expressed earlier and more anteriorly than genes located 

more 5’ (Deschamps, 2007; Duboule, 1998, 2007; Krumlauf, 1994; Mann, 2005; McGinnis 

and Krumlauf, 1992). This genomic arrangement is found in all metazoan species examined 

and research has found a wide variety of disorders and abnormal phenotypes associated with 

mutant variations of selected Hox genes (Duboule, 1998; Graham et al., 1989; Krumlauf, 

1994; Quinonez and Innis, 2014). Hox proteins function as transcription factors to 

preferentially bind DNA and regulate gene expression, however Hox proteins demonstrate 

poor binding specificity and stability of binding. Hox proteins overcome the problem of non-

specific binding by forming complexes with other transcription factors that increase 

specificity and affinity enabling accurate gene control (Gehring et al., 1994; Slattery et al., 

2011). This combinatorial binding of their targets through multiple factors to overcome non-

specific binding has been termed “latent specificity” (Slattery et al., 2011). The interaction 

with other protein cofactors is key to optimal binding, most notably with members of PBC 

and MEIS proteins, inside of the TALE family. (Chang et al., 1996; Jacobs et al., 1999; Mann 

and Chan, 1996; Moens and Selleri, 2006).  

 One group of the homeobox genes are the TALE (Three Amino Acid Loop 

Extension) homeodomain superclass family of which feature an additional three amino acids 
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located within the loop of the helix loop helix binding domain, found between helix 1 and 2 

(Bertolino et al., 1995; Bürglin, 1997).  This family was categorized by Burglin in 1997 due 

to highly conserved upstream DNA motifs and currently consists of the Meis, PBC, IRO and 

TGIF families in animals and the KNOX and BEL in plants. Burglin et al. also identified that 

modifying a single amino acid completely changed the binding interaction potential of the 

homeodomain, and that a variety of amino acids can interchange within the same spot while 

preserving functionality. For example, TALE homeodomains will commonly contain a 

smaller non-polar amino acid residue in position 50 in the homeodomain sequence that other 

homeodomains do not, which allows TALE to bind DNA-protein interactions that other 

homeoboxes cannot. This versatility in binding restriction increases stability, particularly by 

forming dimers and trimers with other TALE members such as the canonical relationship 

between Hox, PBX and Meis. (Bürglin, 1997; Jacobs et al., 1999; Merabet and Lohmann, 

2015). 

 The Meis gene family was originally discovered in a murine model during efforts to 

study the Myeloid Ecotropic Leukemia Virus. Researchers found the virus targeted and 

integrated itself in a coding region for a then unknown gene, disrupting its expression and 

leading to its naming: Myeloid Ecotropic Leukemia Insertion Site. Recently, Meis genes have 

been connected with human acute myeloid leukemia and also as targets in in cancer cell 

proliferation and lifespan as a regulation target through Hox A7/A9 and Pbx1 (Moskow et 

al., 1995; Nakamura et al., 1996a; Nakamura 2005). Meis genes encode multiple separate 

functional domains, leading to gene control through binding with Meis alone or in 

combination with one or more factors. The key to this binding ability lies in the structure of 

the Meis protein product, with three binding site domains; a homeodomain, a C-terminus and 
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an N-terminus binding sites. The homeodomain serves as the primary DNA binding site and 

includes the aforementioned helix-turn-helix motif. The C-terminal binding site serves to 

bind to other Hox protein products and Meis similar transcription factors. Finally, the N-

terminus otherwise known as the Meinox domain binds specific transcription factors such as 

Pbx. This is key for the production of dimers and trimers, as the homeodomain can be 

securely bound to DNA and the C-terminus is still accessible to other transcription factors 

(Bürglin, 1997; Geerts et al., 2005; Jacobs et al., 1999; Moskow et al., 1995). Meis2 also 

shows extensive alternate mRNA splicing, enables even further variation while maintaining 

highly conserved intron and exon regions. For example Meis2 has four different alternative 

splicing variants which all change the C-terminal structure and are identified as Meis2A- 

Meis2D. A Meis2E splice variant has also been found, but is missing major parts of the 

homeodomain structure, meaning that it can still interact with proteins through the Meinox 

domain but cannot interact directly with DNA. Meis2E possibly plays a role in direct 

negative regulation of normal Meis2 function, but this needs further research to confirm. 

(Geerts et al., 2005; Moskow et al., 1995). 

 Once the importance of these genes was understood, subsequent searches for Meis 

genes were performed in other species. DNA-DNA Hybridization of Meis1 homeobox 

sequences and from Meis1 untranslated regions was performed to identify additional genes. 

Hybridization revealed the same sequence similarity in the untranslated regions within a 

variety of species including Xenopus, humans and mice. However, the Meis1 homeobox 

probe bound to the same sequences as before, but also identified Meis2 and Meis3, which 

share the highly conserved homeodomain region but do not share the untranslated regions, 

meaning that they featured different unique flanking regions (Moskow et al., 1995; 
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Nakamura et al. 1996a; Nakamura et al. 1996b; Steelman et al., 1997). This research lead to 

the identification and sequencing of these genes, where it was found that the Meis1, Meis2 

and Meis3 genes were conserved among vertebrate model organisms including humans, 

chickens, monkeys, mice, Xenopus and zebrafish.  (Cecconi et al., 1997; Moskow et al., 

1995; Salzberg et al., 1999; Smith et al., 1996; Steelman et al., 1997; Zerucha and Prince, 

2000). In addition, an ortholog called Homothorax or Hth was discovered in Drosophila 

melanogaster, which serves a similar role with Hox in development and segment patterning. 

The genomes of teleost fishes such as zebrafish feature the normal meis1-meis3 however 

their genomes contain 2 meis1 genes, meis1a (originally labeled meis4) and meis1b as well 

as 2 meis2 genes, meis2a and meis2b , due to a proposed genome duplication event in the 

teleost lineage after its branching from tetrapods (Santini, 2009, Slattery et al., 2011).  

 Meis1 body pattern expression is highly characterized in both development and in 

specific body systems and disorders. Meis1 was originally discovered as a gene target for 

myeloid leukemia. Since that original discovery Meis1 has since been further tied to cancer 

growth and proliferation, particularly in neuroblastomas (Geerts et al., 2005). Meis1 is also 

more importantly essential for embryonic development and survival due to its extensive role 

in hematopoietic development. Mutations in Meis1 in mice embryos were found to be 

embryonic lethal during mid gestation as a consequence of internal hemorrhaging and anemia 

from system-wide hematopoiesis failure, and also defects in the neural and sensory regions. 

Thus Meis1 plays a role in hematopoietic stem cells and also in differentiation of endothelial 

cells for the formation of the heart and blood vessels (Azcoitia et al., 2005; Minehata et al., 

2008). Meis1 expression is also found in early development of somites and the spinal cord as 

well as in the forebrain, midbrain and hindbrain, and this continues throughout late 
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developmental stages. Meis1 works in conjunction with Pbx and Prep, another vertebrate 

TALE gene, to regulate neural stem cell regulation and differentiation in these areas (Barber 

et al., 2013; Salzberg et al., 1999; Waskiewicz et al., 2001; Waskiewicz et al., 2002). 

Associated with the neural expression and neural stem cells, Meis1 is also key in eye 

development as well where it interacts in combination with more than 20 other homeodomain 

proteins and multiple transcription factors to develop the optical nerves and eyes. When 

meis1 and meis2 are knocked down in the eye, microphthalmia or abnormally small eyes and 

reduced retinal ganglion cells are observed in the mutant phenotype (Zagozewski et al., 

2014). Meis1 is also known to be selectively expressed in the developing limb buds and 

skeletal system, most notably in the cranial and branchial arches, where meis1 knockdowns 

lead to a missing cranial skeleton as well as in selected cartilage (Amin et al., 2015; 

Waskiewicz et al., 2001; Waskiewicz et al., 2002).  

 Zebrafish contain two meis1 genes, meis1a and meis1b. Splice variants of meis1a 

were originally classified as meis4 but subsequent genomic analysis confirmed these to be in 

fact, be a meis1 gene. (Waskiewicz et al., 2002; ZFIN Unpublished data reference (ZDB-

GENE-02122-3)). Since the nomenclature transition from meis4 to meis1a and meis1b is 

fairly recent, most literature still cites meis4. meis4 was the least characterized among all the 

meis genes and only two papers have been published on research projects involving zebrafish 

meis4/meis1b, which is only found naturally occurring in teleost fish. In a zebrafish meis 

survey, Waskiewicz et al., identified and cloned meis 4.1 and 4.2, which are splice variants of 

the same meis4.1 gene, but they did not perform any specific experimentation on meis4 

expression (Amin et al., 2015; Waskiewicz et al., 2001; Waskiewicz et al., 2002). The second 

research paper by Amin et al. examined a full meis1-meis4 transcript knockout in the 
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branchial arch structure of developing zebrafish. With all meis transcripts knocked down 

using morpholino oligonucleotides, this resulted in a mutant phenotype with a minimal / non-

existent craniofacial skeletal structure and diminished nervous system (Amin et al., 2015; 

Waskiewicz et al., 2001; Waskiewicz et al., 2002).   

 Meis2 shares an almost identical homeobox sequence with Meis1 and tends to share 

the same generalized areas of expression, but does exhibit some differences in expression 

patterning. Meis2 neural expression is found in the same common areas as meis1 in the 

nervous system, but exhibits a different pattern in the forebrain, midbrain and hindbrain, 

where it is generally expressed more anteriorly in the head and more posteriorly in the neural 

tube. Meis2 also demonstrates expression early on in the neural plate and at later time points 

within the somites. Fully sectioned somites show solid meis2 expression while developing 

somites start with very weak meis2 expression.  (Biemar et al., 2001; Cecconi et al., 1997; 

Toresson et al., 2000; Zerucha and Prince, 2000). The hindbrain in particular exhibits major 

meis2 expression, possibly due to the large amount of retinoic acid synthesis used in 

signaling in the hindbrain as it is hypothesized that retinoic acid signaling regulates Meis 

gene expression. This control is used to setup specific expression concentration gradients tied 

with gene regulation for exact patterning of retinoic acid which is necessary for correct 

hindbrain development and segmentation (Vitobello et al., 2011). Meis1 and Meis2 share 

overlapping expression patterns in cardiac hematopoiesis and hematopoietic stem cells, 

however Meis2 expression was found in the myocardium, cardiac cushions and all four 

cardiac regulatory valves. Weak Meis2 expression is also found in the nascent heart tube, a 

precursor structure in heart development. Mice lacking Meis2 die similarly to Meis1 mutants 

with systemic hemorrhaging and anemia but additionally demonstrate an abnormal liver and 
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small body size (Azcoitia et al., 2005; Biemar et al., 2001; Machon et al., 2015). In humans, 

a de novo microdeletion of a section of MEIS2 has been found in infants demonstrating 

Tetralogy of Fallot, a common congenital heart defect pattern characterized by altered heart 

chamber size and an incomplete ventricular septum allowing flow between the left and right 

ventricles (Chen et al., 2016). Meis2 also plays a role in retinal development like Meis1, 

being expressed in the entire optic cup. Furthermore, Meis2 is also involved in cell 

differentiation and connection of the retinal nerve, and in addition when mutated a reduced 

cornea and eyelid structure (Machon et al., 2015; Zagozewski et al., 2014). As mentioned 

previously for meis1, meis2 is expressed in the developing cartilage and bone structures, with 

severely repressed craniofacial bones and completely missing hyoid bones and shorter jaw 

structure when observed in a mutant phenotype (Amin et al., 2015; Machon et al., 2015).  

 Meis3 tends to shows expression patterns in similar areas to Meis1 and Meis2 but 

tends to fulfill niche specialist roles in development. In early mesodermal development of the 

neural plate, a nervous system precursor structure, Meis3 is a known downstream target of 

Wnt3. These two together form a regulatory network that helps stem cell proliferation and 

acts as a major factor in anterior-posterior patterning in the neural plate, particularly the 

future hindbrain, cerebellum and hippocampus (Yaniv and Frank, 2010). In a congenital 

heart defect study, Meis3 and Meis1 were implicated as a possible target of Pbx3 in patients 

with congenital heart defects and as a possible risk screen allele when bound with PBX3, 

with a particular affinity for cardiac outflow tract patients (Arrington et al., 2012). Meis3 also 

serves a role in neural connections to both precursor neural crest cells and the developed 

nerves to organs such as the spleen and pancreas (Uribe and Bronner, 2015). Meis3 works in 

these organs in conjunction with Shh and foxa2, where meis3 acts as an upstream regulator of 
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liver and pancreas organs. When meis3 is disrupted in this area, the liver and pancreas are 

abnormally located and lack the full size and functionality of wild type meis3 affected 

organs. This altered functionality includes hyperinsulinemia and hypoglycemia in both young 

and adult zebrafish (DiIorio et al., 2007). More recently, Meis3 has been shown to be 

expressed within developing and adult epithelial and beta lung cells in mice, and that Meis3 

is required for continued survival in these cells through the PDK1 pathway (Liu et al., 2010). 

In a related study by Toyotome, fungus sourced mycotoxin Deoxynivalenol repressed 

expression of Meis3 in these cells, leading to increased toxicity in the lungs possibly 

followed by death. In this research A549 cells modified to transiently express more Meis3 

were less susceptible to the toxicity of the mycotoxin (Toyotome et al., 2016). 

 Meis genes have proven to be extremely important in multiple cellular processes and 

particularly in organogenesis and homeostasis of organs such as the brain and heart. Meis 

genes as a whole have been well characterized and a significant amount of research has been 

performed on their molecular function and role in body patterning. To date, however, little is 

known concerning the complex gene regulation required for these genes to correctly work 

and how their expression is directed to each location within the organism. The Zerucha lab 

used a comparative genomics approach to identify conserved noncoding sequences of DNA 

in proximity to Meis2 and that contained binding sites for proteins that are candidates for 

regulating Meis gene expression. Four regulatory elements were discovered downstream of 

Meis2, named m2de1-m2de4 (for Meis2 downstream element) (Figure 1). These regulatory 

elements are located within a gene that is consistently located downstream from Meis2 and is 

temporarily being called Meis2 link gene or m2lg. m2de1 drives expression in the midbrain 

and hindbrain as well as muscle fibers along the trunk. m2de2 expression is centralized 
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within neurons in the brain and along the entire trunk of zebrafish within all muscle fibers 

(Ferrara, 2015; Freundlich, 2016;). My project characterizes the regulatory element m2de3, 

which I hypothesize is controlling Meis expression and thus provides insights into the 

regulatory mechanisms controlling expression within this family of genes. 
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Figure 1- Diagram demonstrating m2de elements size, similarity across species and location 

in sequence relative to meis2 and m2lg 
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Materials and Methods 

 

General Zebrafish Husbandry and Care 

 Adult Zebrafish are housed in an enclosed Marine Biotech Z-Mod system (Aquatic 

Habitats) that uses a combination of UV and particulate filters to generate a large, constantly 

running quality water supply to each tank in the system. The fish habitat system is 

maintained and the wild type / transgenic fish lines are fed and cared for based upon 

standardized conditions as defined in the Zebrafish Book (Westerfield, 2000) and located on 

the Zebrafish Information Network or ZFIN (http://zfin.org/). The entire aquatic system is 

kept on a synchronized day/night light cycle timer for a 14 hour day and a 10 hour night 

cycle. Water conditions are monitored daily, and kept within optimal conditions with a 

temperature of 27° C, pH within the range of 7.2-7.5, a water conductivity within 450ppm to 

650ppm. The water is also conditioned using crushed coral, which buffers the pH and 

releases calcium into the water. Feeding consists of a combination of Adult Complete 

Zebrafish Diet dry food (Zeigler Brothers) and live brine shrimp (Brine Shrimp Direct) fed to 

adults and a specialized nursery diet (Zebrafish Maintenance Systems Ltd. UK) adjusted 

based on the size and age of young fish.  

Zebrafish pair-wise crosses for experiments are conducted by selecting a breeding 

tank in the late afternoon around approximately 5:30-9:00pm and then separating the male 

and female zebrafish in a specialized divider tank with a mesh bottom that fits within the 

normal tank, which along with a plastic plant is used to simulate the shallow shores where 

natural spawning would occur. This specialized cross tank is then carefully returned to the 

system for the night. In the morning when the day cycle starts, the plastic divider is removed 
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and the fish are allowed to spawn at a controllable time point for around 30 minutes to an 

hour with the fertilized eggs falling through the mesh bottom of the tank. Embryos are then 

collected and cleaned from the bottom of the tank for use in experiments. When a specific 

synchronized time point is not needed, zebrafish crosses for embryos can also be performed 

by marbling, where two or three layers of clear glass marbles are placed in the bottom of the 

tank and this can be left for up to two days. Zebrafish will lay eggs normally, and these will 

fall through the marbles and can be collected. Embryos are collected by straining the contents 

of the fish tank through a mesh filter from the tank and then rinsing the tank thoroughly two 

or three times with RO and filtering again to collect all embryos. The mesh is then placed in 

a glass pyrex dish filled with 0.3x Danieau solution (17 mM NaCl, 2mM KCl, 0.12 mM 

MgSO4, 1.8 mM Ca(NO3)2, 1.5 mM HEPES, pH 7.6) rinsed with RO water and then the 

dish is transferred to a 30° C incubator. Optionally, 0.8% Danieau methylene blue solution 

(10 drops of methylene blue per 500ml of 0.3x Danieau solution) can be added to the dish to 

hinder growth of any organic material. Embryos are cleaned by hand using a disposable glass 

pipette and solution water changes are performed daily to keep embryos healthy until 

experimental time points are reached. After approximately one week, embryos can be 

transferred to a full size tank in the system nursery.  

 

Generation of HCNE m2de3 Construct 

 The m2de3 element was originally isolated from the mouse (Mus Musculus) genome 

using PCR (Nelson, 2011). This element was cloned into the pCR-2.1©-TOPO (Invitrogen) 

vector plasmid from which the injection plasmid was made. The mm m2de3 element was 

subcloned into pGW-cfos-eGFP using Gateway Site-Specific Recombination cloning to 
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generate the pGW-cfos-mm-m2de3-eGFP expression construct, and was stored at -80° C as a 

glycerol stock in DH5α cells (Ramsaran, unpublished) (Appendix A, Figure A). To produce 

the injection construct, the glycerol stock is scraped with a P20 pipette tip which is used to 

transfer bacteria to an Ampicillin (Amp) Luria-Betani Broth (LB) agar plate and cultured 

overnight at 37° C. The next morning, the plate is examined for growth and single colonies 

are selected for liquid culture. 40ml glass liquid culture tubes are filled with 3ml of liquid LB 

broth and 3 µl of 100 ng/ul concentration of Ampicillin antibiotic and then the tube is placed 

in a heated 37° C gyroshake table overnight. Liquid cultures are removed in the morning and 

a Wizard Plus SV Miniprep DNA Purification Kit (Promega A1460) is used to isolate the 

DNA construct. The m2de3 expression construct is then cleaned using a phenol chloroform 

extraction to purify the DNA.  Phenol chloroform extractions start by raising the reaction 

volume to 100 µl and then 10 µl of 3M NaAc (pH 5.2) solution is added. 110 µl volume of 

Phenol-Chloroform-Isoamyl alcohol (25:24:1 v/v) solution is then added to the reaction tube, 

gently vortexed for one minute to thoroughly mix and then spun in a centrifuge for five 

minutes at 13,000rpm at 4 °C to separate the aqueous layer. Upon the completion of the spin, 

two clear layers should be present. If a third white protein interface is present, more phenol-

chloroform mixture is added and the tube is centrifuged again. The upper layer which now 

contains the DNA is transferred to a new eppendorf tube. 100 µl of Chloroform-Isoamyl 

alcohol is then added to the new tube and vortexed for one minute to mix. The eppendorf 

tube is then returned to the centrifuge and a three minute spin is performed at 13,000rpm at 4 

°C temp. The upper layer from this spin is transferred to a new eppendorf tube and 250 µl of 

100% ice cold ethanol is added and then the vial is transferred to the -20° C overnight. To 

collect the DNA pellet, the tube is spun down for twenty minutes at 13,000rpms at 4° C.  The 
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ethanol is then pipetted off and 500µl of 70% ethanol/DEPC water is added to wash the 

pellet. The tube is then briefly inverted and then is spun for a final collection of DNA at 

room temperature for twenty five minutes at 13,000rpm. Once the final centrifuge cycle is 

complete, around 80% of the ethanol wash is carefully pipetted off as to not disturb the DNA 

pellet and then placed uncapped sideways on a clean chemwipe to evaporate the remaining 

ethanol leaving the DNA pellet behind. This process takes anywhere from 5 to 45 minutes 

and is carefully observed to prevent over drying of the DNA. Once the ethanol has 

evaporated, the pellet is resuspended in 20 ul of DEPC water and quantified by 

spectrophotometry (Thermo Scientific ND-1000). Once complete, the DNA construct is 

diluted to 125ng/ul and aliquoted into eppendorf tubes of 6 µl to minimize freeze/thawing 

between injections and stored at -20° C. 

 

Generation of transposase mRNA  

Tol2 Transposase mRNA used in microinjection experiments is generated from a 

DNA construct in PCS2-FA originally sourced from the lab of Dr. Chi-Bin Chien (Kwan et 

al., 2007), stored in glycerol stock at -80C (Appendix A, Figure B). The glycerol stock is 

plated on Ampicillin (Amp) LB agar plates and cultured overnight at 37° C. Single colonies 

are selected and then transferred to 3ml liquid cultures which are grown overnight at 37° C. 

The plasmid DNA is then isolated from the culture using a Wizard Plus SV Miniprep DNA 

Purification Kit (Promega A1460). 20 µg of Tol2 transposase DNA template is prepared for 

transcription through a linearization digest using restriction endonuclease Kpn1 (NEB 

R0142S); [20µg plasmid DNA template, 5.0µl of Kpn1 enzyme (NEB R0142S), 10.0µl NEB 

buffer 1.1(NEB) and brought to a final volume of 100µl using Gibco distilled water 

(Invitrogen 15230)]. DNA template is digested overnight at 37° C, and then ran on a 0.5% 
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TBE gel to ensure complete linearization of the template. Finally, the template DNA is 

purified using a Phenol-Chloroform extraction as detailed above and then purity and 

concentration determined by spectrophotometry and stored at -20° C. 

 Linearized Tol2 transposase DNA template is then used to produce mRNA for 

microinjection using an SP6 mMESSAGE mMACHINE© RNA Transcription kit (Invitrogen 

by Thermo-Fisher). The work area and all gloves used during the reaction are thoroughly 

cleaned with RNaseZap (Ambion© AM9780) and dried. Enzyme Mix and Transposase 

template are thawed in an ice bath while the 10x reaction buffer and 2x NTP/CAP are thawed 

at room temperature. All solutions are briefly vortexed and spun down once thawed and then 

the following is added in order to an autoclaved eppendorf tube at room temperature- [1µg of 

Tol2 Transposase Template, 10.0µl of NTP/CAP, 2.0µl of 10x Reaction Buffer, 2.0µl of 

Enzyme mix, and brought to a full volume of 20.0µl using brand new aliquot of DEPC 

treated nuclease free water (Invitrogen 46-2224)]. The tube is briefly mixed by flicking and 

briefly spun down and is then incubated at 37° C for two hours. At the one hour forty five 

minute mark, Turbo DNase is added to the reaction tube, mixed by flicking and spinning 

down and is then returned to the water bath for the final fifteen minutes. 30ul of DEPC water 

and 30ul of Lithium Chloride precipitation solution (7.5M lithium chloride, 100mM EDTA) 

is added to the reaction tube, which is then stored in -20° C for a minimum of two hours or 

overnight. The mRNA is pelleted by centrifugation at 4° C for 15 minutes (13,000rpm). The 

supernatant is removed leaving the mRNA pellet, and 1 ml of 70% Ethanol wash solution is 

added to clean the pellet and then the vial is returned to the 4° C centrifuge for another ten 

minutes at 13,000rpm. Upon completion of the spin, the supernatant is removed and the 

pellet is allowed to air dry for five minutes by inverting the eppendorf tube over a clean wipe. 
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The mRNA pellet is then resuspended in 20µl of DEPC treated nuclease free water. The 

mRNA is quantified for both purity and concentration by spectrophotometry, and is then 

separated into single use aliquots of 4 µl 175ng/µl concentration for injections and stored at -

20° C. A single aliquot is then selected and run on a 1% TBE agarose gel in RNA loading 

dye along with an ssRNA ladder (NEB N0362S) to confirm the mRNA is of the correct size. 

 

Microinjections of m2de3 vector construct 

 Micro-injections of embryos are performed on single cell stage embryos using a 

Nanoliter 2000 micro injector (World Precision Instruments Model B203XVY). The overall 

solution injected is a 5 µl solution containing 125 ng/µl DNA, 175 ng/µl transposase mRNA, 

2µl Phenol Red with the remaining volume composed of DEPC treated RNase free water. 

Transposase mRNA is translated by the zebrafish embryo to produce the transposase protein 

required to insert the m2de3 expression cassette into the host genome. Phenol red (Sigma 

Aldrich 0.5% Phenol Red in DBPS solution) is utilized as a red visual marker injected and 

visualized through the clear embryo to confirm the injection. The injector must then be 

loaded with an injection needle, which is an RNase free 3.5 nanoliter capillary tube heated 

and pulled using a Vertical pipette puller (David Kopf Instruments Model 700C) with a heat 

setting of 85 and a solenoid setting of 0. This needle is then beveled by hand using forceps 

tweezers and then locked into the micro-injector, back filled with mineral oil filler and then 

attached to the micro injector needle. Prepared injection solution is then drawn up through 

the needle point and then the mircoinjectior is set to 4 nl and is used to inject the injection 

solution into the yolk of each embryo. Embryos are lined up against the edge of a microscope 

slide which is directly attached to a petri dish stage to align and prevent movement of the 
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embryos. Embryos are then injected from the side directly into the yolk on the far side clear 

away from the developing cells in the embryo by pushing the needle through to the yolk 

itself. Red injected solution should be clearly visible within the yolk material once injected 

and then the needle is carefully removed to prevent tearing of the chorion. Injected embryos 

are then removed from the slide, cleaned and then kept in 0.3x Danieau buffer in an incubator 

at 27° C. Embryos are then cleaned two to three times daily and dechorionated as necessary 

before the imaging process if they have not hatched on their own accord. 

 

Analysis of Gene Expression through Optical and Laser Confocal Microscopy   

 Embryos are prepared for laser confocal imaging by first being anesthetized using a 

20% tricaine (Tokyo Chemical Industry, Ltd.) Danieau buffer solution and are observed until 

there is no swimming movement. Embryos are then immobilized in a 0.8% Danieau buffer 

agarose solution, which is pipetted onto a deep well microscope slide, and the embryos are 

arranged in imaging positon before the agar sets and a glass cover slip is applied. Transgenic 

embryos are observed under a Zeiss laser confocal microscope (Zeiss LSM 510) using 

standardized laser channel gain settings to visualize any eGFP expression that is clearly 

separate from naturally occurring autoflourescence, using FITC and DAPI filter visual 

settings. If expression is observed, images are collected and compiled into single and 

compound Z-Stack images, using a FITC-CY2-GFP Long pass setting using the Zen 2009 

computer program, with the exact stack size and speed parameters adjusted to each individual 

fish. This process is performed at varied time points, inside the range of 10 hpf to 72 hpf, 

saved as a high quality .tif format with the only image modification being incremental size 

markers applied by the laser confocal software.  
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Embryos that are to be screened purely for breeding or transgenic status confirmation 

purposes can be easily screened without being subjected to immobilization and anesthetic. 

Embryos are placed in a thin layer of 0.3x Danieau buffer inside a clear glass Pyrex dish, into 

which around 4-5 drops of tricaine solution (20%) are placed to slow the swimming and 

twitching of young embryos. At this point, the dish can be placed under the normal optical 

fluorescent microscope (Olympus IX81.3 using Microsuite Biological Suite 5 v.3.1), usually 

at 48hpf. Embryos can be quickly viewed through the microscope and transgenic embryos 

can then be removed via a disposable glass pipette and transferred into another dish.  

 

Genome Analysis of Adult Zebrafish through Fin Clip protocol  

 Clipping the caudal fin in zebrafish is a common method to isolate genetic material 

for analysis and further molecular genetic study. Potential transgenic adult fish were selected 

and moved to a quarantine tank. Surgical forceps and metzenbaum scissors were sterilized 

and thoroughly cleaned with 90% ethanol and air dried. The transgenic fish were moved one 

at a time to a 0.8% tricaine solution in system water in a wide mouth glass bowl where the 

fish is observed for continual gill movement and swimming for a maximum of five minutes. 

When the fish was properly anesthetized, the tail fin was gently held upright with forceps and 

a small section of the upper part of the caudal tail was removed, no more than halfway 

between the tip and centerline. This should occur without blood loss. The fish was then 

immediately transferred to a bubbler oxygenated recovery tank and observed carefully for 

return to normal behavior within five minutes of the transfer. From this point on the fish was 

carefully monitored in a separate recovery tank until the caudal fin section has completely 

regrown, usually around two weeks. The removed tail section is carefully placed into an 
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Eppendorf tube and can be used immediately or stored at -20° C until genome extraction was 

performed. Genomic extraction was performed using an activated Proteinase K genome 

extraction buffer  ( 10mM Tris pH 8.2, 10mM EDTA, 200mM NaCl, 0.5% SDS, 200ug/mL 

Proteinase K ) to break down the fin tissue and cartilage on a heated gyroshake table (56°C, 

100rpm, 3 hours or until completely digested). The product was then purified by phenol 

chloroform DNA purification and genomic DNA analyzed by polymerase chain reaction 

(PCR) to determine the presence of the transgenic expression construct using m2de3 specific 

primers (Appendix A, Table 1) and Taq PCR Polymerase (ThermoFisher Scientific). PCR 

was performed under the following conditions; initial melt of 93° C for 1 minute thirty, 

normal melt cycle at 93° C for thirty seconds, normal annealing cycle at 58.9° C for 30 

seconds, normal extension cycle for 68° C for one minute, repeated for 30 cycles followed by 

a completion hold at 68° C for ten minutes and indefinite final hold at 4° C until the samples 

are removed from the PCR machine. PCR samples were loaded on a 1% TBE gel and 

examined for bands of the correct size against a positive m2de3 control looking for bands 

around 491bp. (455bp element plus two 18bp primers) (Figure 2). 
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Figure 2- Gel Image Example of Transgenic Fin Clip Screening. Column A is 1 kilo base 

DNA Ladder with a bottom band of 500bp (white arrow), column B is a 100bp DNA ladder 

with a 500bp ladder band (white arrow). Column C, D and E are negative result PCR 

columns. Column F is a negative experimental result with no bands, Column G has incorrect 

bands size and is a negative result, Column G is a positive transgenic result, and Column H is 

A     B    C     D     E           G    H     I      J 
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a negative experimental result. Finally, Column I is a positive PCR result from m2de3 topo 

DNA. 
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Results and Discussion 

Microinjection Characterization of m2de3 

 Expression of the m2de3 element was characterized through the eGFP reporter gene 

construct microinjections and all embryos were imaged using a Zeiss laser confocal 

microscope. Initial test screens of transgenic zebrafish initially showed limited expression at 

24 hours post fertilization (hpf) and clearer expression at 36 and 48 hpf. Injected embryos 

were screened at 24hpf multiple times and faint GFP expression was observed in a select few 

embryos, but expression was extremely inconsistent within each clutch of embryos and 

across multiple clutches. In later experiments, large batches of embryos were split and half 

were imaged at 24hpf and 48hpf and the earlier embryos demonstrated no GFP expression 

while the later batch demonstrated notochord expression (Figure 3, Figure 4) In addition, 

expression time points before at 20hpf and after at 26hpf and 28hpf yielded similar 

irregularity and no repeatable expression pattern. The irregular expression observed at 24hpf 

is more than likely a consequence of irregular or altered development timelines or the GFP 

expression cassette being inserted adjacent to another regulatory element within the zebrafish 

genome. 

 Consistent m2de3 expression begins with faint and gradual expression along the 

notochord, first observed around 30hpf to 32hpf in a distinctive pattern starting in large 

sections of the notochord and in dorsal ventral aligned stripes of the hypochord and floorplate 

structures located along the notochord (Figure 3A, 3B). Around the 34 to 36 hpf mark, the 

expression pattern brightens in eGFP expression and the pattern becomes visible along the 

entire length of the notochord, but expression still remains intermittent through the entire 

notochord (Figure 3C, 3D). At 38 to 42 hpf, the zebrafish notochord pattern is fully visible 
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and is generally bright and clear along the notochord with large notochord cells exhibiting 

GFP expression (Figure 3E, 3F). Expression strength peaks after 48 hpf, with bright clear 

expression within the notochord (Figure 3F). The eGFP expression pattern tends to expand in 

size and strength of expression over previous time points, often wrapping in a curve within 

the notochord as the notochord cells fill out (Figure 3F). Expression continues at a high level 

of consistently bright expression through 56 and 58hpf, and the notochord expression pattern 

expands to the largest observed size (Figure 3G, 3H). This expression is present along the 

entire length of the notochord in varying strength and remains through 60hpf (Figure 3I). 

Motor neuron expression was observed clearly through all time points examined from 30hpf 

to 60hpf but rarely followed a consistent pattern completely along or around the notochord. 

The neural pattern was also seen rarely around the heart in around 6 embryos total during 

microinjections, for example Figure 3E and 3F. The heart expression was originally thought 

to be autoflourescence associated with the yolk since it was commonly imaged either against 

or close to the yolk of the developing embryo but upon comparison of all the collected 

images along with the transgenic line images this expression was confirmed as part of the 

heart. Muscle fiber expression was seen in embryos at a selection of different time points 

after 48hpf during microinjection screens, specifically 32hpf, 48hpf, 52hpf, 56hpf, and 58hpf 

(Figure 7). Observed muscle fibers were only seen in one or two embryos in each clutch of 

embryos and were always seen in short sections of the embryos either on one side or 

mirrored along both sides of the notochord region. All three of these secondary patterns were 

always seen in the presence of to at least partial notochord expression of the usual pattern.  
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Figure 3- Microinjection m2de3 transgenic fish. Figure 3A is a 30hpf embryo with arrows 

pointing to developing notochord cells; Figure 3B is a 34hpf embryo with an arrow pointing 

to early faint notochord expression; 2C is a 32hpf embryo with arrows showing full 

notochord cell expression; 2D is a 36hpf embryo shows arrows pointing out large notochord 

cells and notochord sheath expression; 2E is a 38hpf embryo with heart expression marked 
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by a red arrow and white arrows marking notochord cell and motor neuron expression; 2F is 

a 48hpf embryo with notochord cell, motor neuron and notochord sheath expression marked 

by white arrow; 2G is a 56hpf embryo with large notochord cell expression; 2H is a 58hpf 

embryo showing full length notochord expression with arrows highlighting larger sections of 

expression; 2I is a 60 hpf embryo with white arrows showing the sharp notochord sheath 

boundary and internal notochord cells ; All images are arranged anterior left / posterior right. 

Scale Bar is 100 µm in length. 
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Transgenic Line Characterization of m2de3 

 To generate a stable m2de3-eGFP transgenic line, 38 zebrafish embryos were raised 

from injected embryos that exhibited notochord eGFP expression. Each embryo was raised to 

adulthood, and a fin clip DNA extraction was performed to test the transgenic status of each 

animal. 8 zebrafish generated a positive confirmation PCR result as determined by gel 

electrophoresis and were separated as full F1 Generation transgenics. These zebrafish were 

then crossed pairwise 1 male and 1 female with both petshop non-transgenics and other 

m2de3 transgenics to test for GFP expression patterns in the F2 Generation. Parings between 

1 male transgenic zebrafish and 2 female transgenic zebrafish were found to generate a very 

consistent pattern of GFP expression within the F2 generation. This expression was observed 

at 32hpf, 38hpf, 48hpf and 56hpf, key time points selected from the microinjection 

experiments. Expression appears extremely similar in pattern to the original primary injected 

embryos, but is observed along the entire length of the notochord, with sharply defined 

boundaries along the outside of the notochord sheath and is present in all notochord cells 

(Figure 4A, Figure 4B). In addition, heart expression is much clearer and illuminates the 

entire heart instead of the restricted areas seen in microinjected embryos (Figure 4A, Figure 

4B). This heart expression was observed in two patterns, one as a highlighted outline of 

neuron notochord style expression (Figure 4A) and one of the entire heart expressing eGFP 

(Figure 4B). The heart expression pattern was consistently observed in all time points while 

the whole heart image shown was demonstrated by two embryos Figure 4B.  
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Figure 4- F2 Generation Transgenic Fish. Figure 4A is a whole fish image compilation from 

a 56hpf embryo with 100 µm Scale Bar. Heart expression is marked with a red arrow and 

some detailed notochord expression is marked in white; Figure 4B is a whole fish image 

compilation of a 48hpf embryo. Heart expression is marked with a red arrow and the white 

arrow points to the notochord sheath boundaries and notochord cells; Figure 4C is an 

expanded zoom image of the circular heart expression taken from Figure 4B source images, 



 

 
39 

indicated with a red arrow; Figure 4D is a zoomed image of notochord expression taken from 

Figure 4A source images with the white arrow pointing to individual notochord cell 

boundaries; Figure 4E is an image from a 38hpf embryo showing mixed expression in the 

notochord and boundaries of the notochord sheath. All images are arranged anterior left / 

posterior right. Scale Bar is 100 µm in length. 
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Discussion of Expression patterns 

 The most prominent expression observed to be directed by m2de3 is in the notochord. 

In vertebrates, the notochord or Chorda dorsalis is a semi rigid rod like structure located in-

between the dorsal spinal cord and the anterior gut tube that travels the entire length of the 

trunk. The notochord is necessary and required for correct development, with mutations of 

the notochord leading to an abnormally short body plan which directly hinders zebrafish 

movement particularly in swimming and feeding and in extreme cases are developmentally 

lethal due to incomplete nervous systems. The notochord serves as a structural strength 

“backbone” for the skeleton until bone ossification occurs, upon which the notochord is 

either ossified into the vertebrae structure or in certain organisms remains as a separate 

structure. The notochord also serves as a developmental organizer splitting the right and left 

halves of an organism and sending patterning signals to other nearby structures for body 

positioning and cell-fate differentiation. The most notable role of the notochord in 

development is as the signaling center for primary neurulation, somitogenesis and neuron 

pathfinding to connections in the spinal cord. Current research has also tied notochord-based 

signaling to development of cardiac neural connections, formation of the aorta and other 

blood vessels as well as the development of the pancreas (Eriksson and Löfberg, 2000; 

Fouquet et al., 1997; Pourquié et al., 1993; Stemple, 2004, 2005; Yamada et al., 1991; 

Yamada et al., 1993). This control and organization of development is performed through 

production and release of a variety of signaling molecules such as BMP, Wnt, Shh, and Sox9a 

(DiIorio et al., 2007; Lien et al., 2013; Pourquié et al., 1993; Yamada et al., 1993; Yamada et 

al., 1991).  
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 The notochord develops from a line of multipotent cells originally designated during 

gastrulation of an embryo, which then differentiates into patterned chordamesoderm which 

then develops into the notochord. The final notochord structure must remain flexible from 

side to side, but also must be able to mechanically support the body skeleton and not travel 

past physical limits in the vertical up and down axis but remain flexible enough for 

swimming. This structure is described well in an analogy in Stemple as a “firehose packed 

full of water balloons with steel cables at top and bottom” (Gilbert, 2000; Stemple, 2004, 

2005). Using this analogy, the firehose itself is the flexible but strong notochord sheath 

which serves as an outer boundary for the notochord that retains the notochord cells and 

provides high outer wall strength and resistance to interior cells. The notochord cells 

themselves are highly vacuolated, and press outward against the sheath and resemble the 

water balloons in this analogy, creating tension through the structure. The steel cables 

running along the top and bottom are the floorplate and the hypochord respectively, where in 

this position they provide more rigid structure in the vertical axis thanks to large 

concentrations of cartilage proteins, but remain flexible in the horizontal axis for locomotion 

(Stemple, 2004, 2005). In zebrafish, the designated mesoderm is clearly visible around 12 

hpf and transitions into a clearly visible notochord around 24 hpf which is then present 

throughout the adult life of zebrafish. The m2de3 directed expression in the notochord region 

is normally observed within single cells of the notochord in primary embryos that have been 

microinjected with the expression cassette. However, imaging of a stable transgenic m2de3 

line has shown that this expression pattern occurs throughout the entire notochord instead of 

in single cells, and that the single cell expression pattern is likely a result of mosaicism. 

Microinjections of an expression cassette into zebrafish embryos does not ensure that the 
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construct is integrated into every single cell of the organism, thus leading to the mosaic 

expression patterns from all cells not necessarily containing the injection construct. 

Comparison of the transgenic m2de3 directed eGFP pattern and the transgenic F2 expression 

shows clear irregular vertical lines which are extremely similar to the structural boundaries 

visible between notochord cells seen in unstained and stained wild type zebrafish images 

(Figure 6) available through ZFIN (Abdelilah et al., 1996; Stemple, 2005; Thisse et al., 

2001).  The extremely sharp and clean outer boundaries of the expression pattern also make 

sense with the tension of the notochord sheath which retains the shape and sharp lines along 

the edge of the notochord and provides its strength, which provides clear evidence for this 

type of expression.  In addition, some of the longer line sections seen along the top and 

bottom of the notochord in Figure 3D, Figure 4D and Figure 4E clearly resemble sections of 

the hypochord and floorplate regions, being located extremely close to the notochord and 

often demonstrate mirrored expression on both dorsal and ventral sides of the notochord. 

Finally, different Hox genes and Meis/Pbx have been independently shown in the literature to 

be expressed actively in the notochord during time points when m2de3 directed expression 

has been observed. This provides even more evidence for m2de3 expression driven by a 

highly conserved non-coding element that is known to be associated with binding to these 

elements in the notochord (DiIorio et al., 2007). This validates my observations and also 

suggests that m2de3 does indeed direct expression of Meis2 expression in the notochord. 

 The next area of expression we have to examine is the spinal column, particularly the 

posterior region of the spinal cord and its motor neurons. The spinal cord runs above or 

dorsal to the notochord along the trunk of the body and serves as the primary relay and 

connection between the peripheral nervous system of most of the body and limbs and the 
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central nervous system. The spinal cord is formed from ectodermal cells which make up the 

precursor neural plate structure during a process called primary neurulation. This plate is then 

signaled by Sonic hedgehog (Shh) from the notochord to transform in shape and fold 

downward to the notochord itself, then extend in the elevation phase upward. A hinge is then 

formed at the dorsolateral hinge point in the middle of the neural plate and the two ends fold 

together into the middle over the neural tube space creating the neural tube structure, which 

is connected together by the neural crest cells to form the final neural tube that will become 

the full spinal cord. This neural tube region is then further differentiated based on gradient 

strength of signal molecules BMP4, BMP5, BMP7 and Shh to differentiate dorsal ventral 

axis patterning and to pattern each section of the neural tube for its future role as the spinal 

cord (Gilbert, 2000; Zelenchuk and Brusés, 2011). Some of the cells from the neural tube 

will become motor neurons, or the neural connection between muscle fibers and the nervous 

system. Motor neurons differentiate from the neural tube and form precursor motor neurons 

by 16 hpf in zebrafish (Myers et. al., 1985; Myers et al., 1986). After this original 

differentiation, two types of motor neurons will arise from the designated precursor cells, 

primary and secondary motor neurons.  

 Primary motor neurons are much larger than their secondary counterparts, and have 

different branching patterns and size differences. Primary motor neurons will push outward 

from the spinal cord region around 20 hpf. In zebrafish there are three primary motor neurons 

always found in each somatic segment, labeled rostral (RoP), Middle (MiP) and Caudal 

(CaP) and by a variable primary neuron (VaP) that occurs in half the segments, alternating 

between present and absent in each segment. Primary motor neurons demonstrate larger and 

longer reaching dendrites, and an axon connector that travels along the interior side of the 
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Mauthner axons. In comparison, Secondary motor neurons have much smaller cell bodies, 

around 170 um in overall diameter versus the primary motor neurons which are around 670 

um. There are 25 secondary motor neurons formed within each segment with varying 

patterns of much smaller dendrites and their thinner axon falls on the outside of the Mauthner 

axon. Finally, secondary axons exit the spinal cord region later around 26 to 28 hpf, and 

reach full size by 48hpf. Both neuron types direct dendrite and axon connections specific to 

the surrounding tissues as Hox and LIM homeodomain proteins which drive genes such as 

Ret and Gfra to establish correct connections with other neurons, muscle cells and limb 

neural connections (Catela et al., 2016; Mallo et al., 2010; Myers et al., 1985; Myers et al., 

1986; Rousso et al., 2008; Westerfield et al., 1996; Zelenchuk and Brusés, 2011). 

 The m2de3 directed reporter gene expression also appears to be located in the motor 

neurons. This expression is observed throughout the embryo within a punctate pattern, which 

is clearly separate from the notochord expression pattern. In embryos microinjected with the 

expression construct, I observed small sections of the fish exhibit a small selection of these 

repeated motor neuron cell bodies expression pattern, with other sections of the zebrafish 

demonstrating little or no expression in the same pattern (Figure 4A, 4B). This is more than 

likely also due to mosaicism, as described previously, from the microinjections meaning that 

the construct is not present in all cells. In the transgenic line imaging, the motor neuron 

pattern is still visible but is more washed out against the brighter notochord expression 

(Figure 6). However, many characteristics of the expression pattern fit with motor neuron 

bodies demonstrating circular or oval structures in the correct area that matches stained 

expression (Myers et al., 1985; Myers et al., 1986; Zelenchuk and Brusés, 2011). Second, the 

size of the punctate expression structures does indeed vary in size, with some much larger 
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and brighter expression sites as primary motor neurons and smaller secondary motor neurons 

in the flanking sites in the same region (Hutchinson and Eisen, 2006; Lin et al., 2012; 

Zelenchuk and Brusés, 2011). Probably the most important piece of evidence is why this 

expression is directed only to the cell body of the motor neuron and not the axon and dendrite 

regions of the cell that should be visible in later time points. While certain m2de3 directed 

expression research images do show small projections from the central cell body, for 

example in Figure 3C, this expression pattern makes sense for a motor neuron branching out 

into the trunk muscles but we cannot determine exactly which motor neuron type each 

expression shape is. This would also coordinate with when m2de3 directed expression is first 

observed shortly after these motor neurons have reached their final position and are starting 

to branch out in association with other factors, and why no expression is seen before 30hpf. 

(Hutchinson and Eisen, 2006; Jung et al., 2010; Rousso et al., 2008; Zelenchuk and Brusés, 

2011).  However, since eGFP located within the cytoplasm of cells it should be seen 

throughout the entire cell instead of just the cell body. One possible explanation is that since 

axons and dendrites are small thin structures extending from the larger cell body that these 

structures may not be always visible due to less eGFP located within these extensions. 



 

 
46 

Figure 5- Motor Neuron Examples at Selected Time points of microinjected embryos. Figure 

5A is a whole fish image at 48hpf with white arrows pointing to large groups of motor 

neurons; Figure 5B is a tail section motor neuron example at 36hpf with arrows showing 

motor neurons against the notochord; Figure 5C is a tail section at 60hpf and has arrows that 

show expression on all sides of the notochord. All images are arranged anterior left / 

posterior right. 

 

Figure 6- Notochord section containing Motor Neuron Example Selected from a 48hpf 

Transgenic F2 embryo aligned with a reference image of an unstained notochord from Figure 
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4 of (Stemple, 2004; Stemple, 2005). White arrows point to notochord cells with clear cell 

wall boundary detail. Images are arranged anterior left / posterior right. Scale Bar is 100 µm. 

 

 

Figure 7- Lateral Line System Examples of F1 generation. Figure 7A is a 50hpf embryo with 

an arrow showing one pair of lateral line cells; Figure 7B is a 56hpf embryo showing the 

lateral line pattern along the entire trunk marked by white arrows. Scale Bar is 100 µm. All 

images are arranged anterior left / posterior right. 
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 M2de3 directed expression could also be involved in the lateral line system in 

zebrafish. The lateral line system is a unique structure that fish and salamanders have that 

travels the entire length of their body and has several mechanoreceptors in a sensory hair cell 

or neuromast that serve to detect environmental conditions and other fish around them 

(Whitfield et al., 1996) Zebrafish also use this system similar to an internal gyroscope for 

movement and orientation in the water column, as well as detection of possible lethal 

contaminants in the water environment. The primary structure consists of 29 neurosensory 

sites concentrated around the head, eye and along the trunk region of the zebrafish, as seen 

on ZFIN (Whitfield et al., 1996, Whitfield, unpublished data). The lateral line sites occur 

along the same area in the trunk of the zebrafish, also similarly in pairs like the ZFIN 

reference (Figure 7A, 7B). While zebrafish do not have the most sensitive or complex lateral 

line system, we should still consider it as a possible target to direct expression for m2de3 due 

to its direct ties to the neural system, and the lateral line system is also known to share 

common neural factors (Fuentes-Pérez et al., 2015; Germanà et al.,2009; Wada et al., 2014). 

Since the m2de3 gene was originally isolated from an organism that does not naturally have 

the lateral line system, it could also be a byproduct of directed neural expression associated 

with the notochord that the lateral line system is responding to. This is further complicated 

since the lateral line system is located further out from the midline of the zebrafish, making 

differentiation between expression sites hard in a horizontal view as zebrafish have been 

imaged in this research. Research of the lateral line system is mostly limited to toxicological 

and neural research, so the current images have shown expression in the neuromast cell 
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locations but we do not currently have enough information to completely rule these out as 

certain expression points in the zebrafish.  

 The final area of m2de3 directed expression that we have observed during this project 

is observed in certain muscle fibers and limited expression that has been observed in previous 

studies regarding the m2lg element transgenics. Muscle fiber expression as directed by 

m2de3 is always found located along the trunk and always together with the presence of the 

expression patterns in the notochord and motor neuron expression type. This expression is 

commonly significantly weaker in magnitude than the neural and notochord expression and 

generally requires higher channel gain on the laser confocal microscope to be viewed clearly. 

In microinjection experiments, visible in Figure 8A are muscle fibers of the same signal 

strength as other expression patterns while Figure 8B shows a high gain contrast image of 

weaker strength muscle fibers located along the trunk. Muscle fibers were observed at a 

variety of time points, specifically 32hpf, 36hpf, 48hpf, 56hpf, 60 hpf and 72hpf. Since this 

expression is inconsistent in location and strength, further breeding of the m2de3 transgenic 

line zebrafish may provide further clarity. In another research project in the Zerucha lab, 

another element, m2de2, was shown to direct transgene reporter expression across the full 

trunk muscle fibers within a stable transgenic line (Freundlich, 2016). In a bioinformatic 

analysis of m2de3 a binding site for MyoD, a muscle fiber and neural gene was identified 

within the m2de3 sequence (Appendix A, Figure C). Comparison of expression patterns of 

MyoD in zebrafish at similar time points to the observed zebrafish pattern shows extremely 

similar expression patterns as demonstrated in Figure 8. Similar muscle fiber expression was 

also observed in zebrafish injected with the m2de1 and m2de2 elements and MyoD binding 

sites were also identified within those sequences as well. Also, the m2de2-eGFP transgenic 
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line showed complete trunk expression patterns, and further examination of the m2de3 line 

could reveal similar results (Ferrara, 2015; Freundlich, 2016;). In context, this would make 

sense given the presence of the binding site itself. This is also supported by the fact that 

MyoD has also recently been discovered to interact with neural development factor NeuroD2 

and with other neural regulation factors similar to m2de3 (Fong et al., 2015; Messmer et al., 

2012).  
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Figure 8- Muscle Fiber Expression Examples of m2de3. Figure 8A is from a 52hpf embryo 

using standard imaging values and white arrows pointing to individual muscle fibers, and the 

notochord pattern. Figure 8B is an enlarged image of a 56hpf embryo with an increased 
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channel gain of eGFP and select muscle fibers marked with white arrows. All images are 

arranged anterior left / posterior right. 
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Conclusions and Future Directions 

 In this project, we have undertaken a thorough examination of gene expression targets 

of the m2de3 element by introducing the element to a model organism that naturally lacks it. 

The mm-m2de3 eGFP expression construct was microinjected into zebrafish and were grown 

to select time points. These experiments have yielded a select area of definitive expression 

targets within the notochord, motor neurons, heart and muscle fibers, consistent across direct 

microinjection and within a stable transgenic line. The notochord is a definitive expression 

site of m2de3 with extremely consistent experimental expression along the notochord, with 

patterns that confirm definitive physical characteristics of the notochord. Motor neurons 

located along the notochord have also shown expression serving as a link between the 

notochord and other targets such as the heart and muscle fibers. Muscle fibers have also 

shown to be an interesting tie in showing a possible connection between neural and muscle 

fiber expression that will be extremely interesting to further research. Finally, the lateral line 

system is located within these regions and must also be considered as a possible expression 

target, but warrants further examination. In addition, these microinjected zebrafish were then 

screened through fin clip genome extraction and tested for m2de3 transgenics which 

generated a transgenic zebrafish line for use in future experiments. 

 Based off the information learned from this project, m2de3 definitely deserves further 

research. The first direction of future research would continue to examine the roles of 

zebrafish meis2a and meis2b to determine if gene expression of these two genes overlaps 

where the expression pattern directed by m2de3 was observed. To this end, I performed 

preliminary studies into zebrafish meis2 expression through in-situ hybridization and 

generation of RNA probes that target meis2a, meis2b and M2lg. I generated the RNA probes 



 

 
54 

necessary to complete this in-situ hybridization and performed successful hybridizations, but 

these were incomplete for most time points and inconclusive at the end of this project. 

Another direction of future research will be the comparison of m2de3 expression in zebrafish 

against meis2 expression in mouse embryos at comparable developmental time points. In 

addition, comparison of the m2lg gene and m2de3 in both mice and zebrafish will allow 

further study related to the possibility that meis2 and M2lg might be sharing the m2de3 

element (Carpenter, 2016)). This would be evidence for selective pressure involving the 

linkage that is observed between these two genes in all vertebrates examined. Another 

exciting experiment would be a full knockout of the m2de3 element from the mouse genome 

as it would yield a unique opportunity to examine these mice for anatomical and physical 

changes in development. These changes might include incomplete or missing development of 

certain structures, changes in performance of organs and also the determination if m2de3 is 

necessary and essential for survival and development of the organism. Finally, we identified 

multiple possible transcription factors that could potentially interact with m2de3 such as 

Myod. These deserve further examination to see if their expression patterns occur in the same 

time points and locations observed in zebrafish and also if they are capable to binding to the 

element. 

 This characterization of the m2de3 element and the generation of the transgenic 

m2de3 line will serve as a vital foundation for further research, and the data we have 

generated on the m2de3 element shows great promise and potential for future research 

developments in developmental genetics of the heart and nervous system. 
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Appendix A- Supplementary Data 

 

Thesis Oligo Primers 

Oligo Primer Sequence Length in 

BP 

Description 

mm-m2de3-5’ GGCTAAGAAGAAGGCATC 18 5’ end of the murine 

Meis2 downstream 

element 3 

mm-m2d3-3’ GAGATCTGTCTACTGTCC 18 3’ end of the murine 

Meis2 downstream 

element 3 

 

Table 1- Oligo Primers used in this thesis project. 
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Figure A- M2de3 Construct figure  
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Figure B- Transposase mRNA plasmid Map  
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Ggm2de3 gtgtaggtcatctccgagaagctgtgacagtgatccaaggttcctcagctgtgcagtgtacataacacaga  
Mmm2de3 gtgcgggtcatcttcgtgatgttctgacagtgagctggggctcctcagctgtgccgtgtacataacacaga  

Hsm2de3 gtgcaggtcagctccacgatgttctgacagtgatccagggctcctcagctgtgcagtgtacataacacaga 

  

Ggm2de3 tgttgggagagtcatctgtcagctatgcctctcctatggagttagagttctagggggaaaagaattcgaca  

Mmm2de3 tgtt-ggggagtcatctgtcagccatgcctctcctatggagttaaagttctagagggaaaagaatttgaca  

Hsm2de3 tgtt-ggggagtcatctgtcagccatgcctctcctatggagttaaagttctagagggaaaagaatttgaca 

  

Ggm2de3 cagtgctgtcactgttacattttcacaatggaagagcatgcaaatattcaacctcctgcttagcagtagtg  

Mmm2de3 ccctgctgtcactgttacattttcacaatagaagagcatgcaaatattgaacctcctgcttagccacagtg  

Hsm2de3 cagtgctgtcactgttacattttcacaatagaagagcatgcaaatattgaacctcctgcttagcaatagtg 

  

Ggm2de3 ccctgtctaatgtctgtgctggttagaataaaaaaatagtgggtgcatctagggctcatagatctgacaaa  

Mmm2de3 tcctgtctaatgtctgtgctggttagaataaaaaatca-tgggtgcatcttgggctctgagatccgacaaa  

Hsm2de3 ccctgtctaatgtctgtgctggttagaataaaaaatca-tgggtgcatcttgggctcagagatctgacaaa 

  

Ggm2de3 ggtcatgct----atgctgggcatttgaattggaaattgtctggacttagattttataaagctcctactgt  

Mmm2de3 ggtcatgctg---tt---gggcatttgaattggaaattgtctggacgtagattttataaagctcccactgt  

Hsm2de3 ggtcatgctatgt-t---gggcatttgaattggaaattgtctggacttagattttataaagctcccactgt  

 

Ggm2de3 tgtc---ggggaaaatttcagcagggttttgtccctagagaggcctcttaggcccttttctgtcctatgaa  

Mmm2de3 tgtgtgtggggagaatttctacagggttttgtccctggagaggcctcttaggcccttg-ctgtcctatgaa  

Hsm2de3 tgtgtgtggggagaatttcagcagggttttgtccctggagaggcctcttaggcccttttctgtcctatgaa 

  

Ggm2de3 tgaatttagatgtgagggtttct-ctgccttaaaactgttaagttcattttgcatacatccccagagagaa  

Mmm2de3 tgaatttagatgtgagggttactcctgccttaaaactgttaagttcattttgcatacatccctagagagaa  

Hsm2de3 tgaatttagatgtgagggttactcctgccttaaaactgttaagttcattttgcatacatccctagagagaa  

 

Ggm2de3 aaactggcagatgcttttgtcttggaagtgtttaaaagaaaactgcagaacaggaacaagggagagaaggg  

Mmm2de3 aaactggcagatgcttttatcttggaagtgtttaaaagaaaactgtagagcaggaacaagagaggaaaggg  

Hsm2de3 aaactggcagatgcttttgtcttggaagtgtttaaaagaaaactgcagagcaggaacaagggagaaaaggg  

 

Ggm2de3 gccctgtgtggagtcccagaacattttggaaatggccaatatgcagttttcatcagtactaaggcggggca  

Mmm2de3 gccctgtgtggagtcccagaacattttggaaatggccaatatgcagttttcatcagtatgaaggcggggtg  

Hsm2de3 gccctgtgtggagtcccagaacattttggaaatggccaatatgcagttttcatcagtatgaaggcggggtg  

 

Ggm2de3 caatatggtgcctgtagctcactggggaatatgaatgttgattaagcatactcccaggctttgaaatcctg  

Mmm2de3 caatatggtgcctgtagcccaccagggaatatgaatgttgattaagcattctcccaggctttgaaattctg  

Hsm2de3 caatatggtgcctgtagttcacgagggaatatgaatgttgattaagcatactcccaggctttgaaattctg  

 

Ggm2de3 aaagcggtgtcagaataatggatgttgagcaaatgtcaagcatttgttaatttctctgttatttggagttt  

Mmm2de3 aaagcagtgtcagaataatggatgttgagcaaatgtcaagcatttgttaatttctctgttatttggagttt  

Hsm2de3 aaagcagtgtcagaataatggatgttgagcaaatgtcaagcatttgttaatttctctgttatttggagttt 

  

Ggm2de3 atctaccatgatcaatcaaataaactagtgcttctctgttgtggcatgtgtcattgatatggtgattaggg  

Mmm2de3 atctaccatgatcaatcaaataaactagtgcttctctcttgtggcatgtgtcattgatatggtgattaggt  

Hsm2de3 atctaccatgatcaatcaaataaactagtgcttctctcttgtggcatgtgtcattgatatggtgattaggt  

 

Ggm2de3 ggctagagaggccttctgcctttttttttttttcttttttttttttttttttctgttacaggtaacagatt  

Mmm2de3 ggctagagagaccttctgcttttttttttc----------------------------caggtaacacatt  

Hsm2de3 ggctagagagaccttctgctttttttc-------------------------------caggtaacagatt  

 

Ggm2de3 acatatgaacag-ccataactttaaaaactgttggtggttggtttaatggga  

Mmm2de3 ataaatgagcagaacagagcttctaa-atttttgtttatggtttaaatttgt  

Hsm2de3 ataaacgagtag-acagagcttttcagttatttgtatattaactgaatacta 

 

 

Figure C- PROMO Analysis Multiple sequence alignment of m2de3: Gg is Gallus 

(Chicken), Mm is Mus musculus (Mouse), Hs is Homo sapiens (Human). Species 
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conservation is unmarked. Binding sites: Blue is a known Pbx binding site, Red is a known 

Hox binding site, Yellow is a known SRY binding site, Dark Green is a known Myod binding 

site, Teal is a known GATA-1 binding site, Lime green is a known HoxD9 binding site, 

purple is a known meis1a binding site. 
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Appendix B- Abbreviations 

 

Amp– Ampicillin antibiotic 

BSA- Bovine Serum Albumin 

DepC- DepC treated nuclease free water 

DNA- Deoxyribonucleic Acid 

Dr– Danieau Rerio or Zebrafish 

EDTA- Ethylenediaminetetraacetic acid 

GipCo- GipCo brand distilled water 

GFP / eGFP– Green Fluorescent Protein 

GTP- General Transcription Factors 

Hpf– Hours post fertilization of embryos 

Hyb. – Hybridization Buffer 

LB– Liquid broth  

MeOH- Methanol 

Mm- Mus Musculus or Mouse Genome  

PBS- Phosphate Buffered Saline Solution 

PBT- Tween-Phosphate Buffered Saline Solution 

PCR- Polymerase Chain Reaction 

PFA- Paraformaldehyde 

PI Buffer- Pre-Immunization Buffer 

Ppm– Parts per million 

RNA- Ribonucleic Acid 

RO- Reverse osmosis treated water 

UV- Ultra violet 
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